Applying AtmoRep for Diverse Weather Applications
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Machine learning has recently seen a rapid wide-spread adoption across various fields of science
including atmospheric and weather research. The emergence of foundation models has marked
a transformation in the science of machine learning. These foundation models are general-
purpose models trained on huge amounts of data using self-supervised methods, eliminating the
need for labeled data. Once trained, the parameters of these models can be utilized as a starting
point for a range of domain-specific tasks. This approach is advantageous in terms of both cost
and performance, as it minimizes the reliance on annotated data compared to models trained
from scratch. Motivated by this, our study explores the foundational capabilities of AtmoRep,
a stochastic atmospheric foundation model, for two distinct weather-related applications, data
compression and statistical downscaling. The training of the 3.5 billion parameter AtmoRep
model consumed about a few weeks of compute time on 32 JUWELS Booster nodes.

1 Introduction

Local weather is characterized by atmospheric variables such as temperature, specific hu-
midity, and wind speed at a given location, time, and altitude. In meteorological stud-
ies, weather typically refers to time scales ranging from hours to several days'. Accurate
weather predictions are crucial for mitigating severe weather impacts like high winds and
flooding? and they are relevant for many planning purposes. Understanding weather pat-
terns requires studying complex interactions among atmospheric variables. The physical
laws describing these interactions are primarily derived from fluid dynamics and radiative
transfer. They are governed by conservation laws of mass, momentum, and energy>*. Nu-
merical Weather Prediction (NWP) models forecast intricate weather patterns5’6, utilizing
preprocessed observational data to estimate the initial conditions’. The NWP models em-
ploy discretization in space and time with current operational models typically achieving
resolutions of around 10 km in longitude and latitude for global forecasts. The output
from NWP models is often post-processed with statistical tools, for example, to achieve
bias correction and to further increase the spatial resolution with statistical downscaling®.
Despite continuous improvements over decades and generally good predictive skills, NWP
models suffer from inherent biases, limited spatial resolution, and structural errors’, along
with high computational costs.

Recently, advanced machine learning (ML) models have transformed weather forecast-
ing. These Al-driven approaches have emerged as strong competitors to traditional NWP



models, offering better predictions at a fraction of the computational cost'®!!. Although
purely data-driven and lacking explicit physics information, these models effectively cap-
ture complex interactions among atmospheric state variables and their spatio-temporal pat-
terns'?. ML models also offer enhanced flexibility and can be trained to directly predict
the atmospheric state several hours into the future, unlike NWP models, which are con-
strained by the Courant-Friedrichs-Lewy (CFL) condition'*. Additionally, advanced ML
models can exploit the added value from multiple datasets with varying resolutions and
they are able to provide efficient ensemble predictions, thus offering confidence intervals
for understanding forecasting uncertainty'®!7.

The emergence of foundation models has enabled a new revolution in machine learn-
ing. These models are trained on vast datasets using unsupervised and self-supervised
techniques, allowing adaptation for various tasks with minimal additional training. Foun-
dation models are also making their way into the field of weather forecasting; one such
model is AtmoRep'”. The training on a large subset of data from the 5th European reanal-
ysis (ERAS5%*) enables AtmoRep to learn comprehensive representations of atmospheric
dynamics. The pretrained AtmoRep exhibits skilful capabilities for various tasks such as
forecasting, temporal interpolation and counterfactuals. Through fine-tuning, the perfor-
mance of AtmoRep can be further improved achieving state-of-the-art results (e.g. fore-
casting) or applied to other downstream tasks (e.g. statistical downscaling). In this paper,
we explore the capabilities of AtmoRep for two downstream tasks: data compression and
downscaling for 2m temperature.

In the following, we first provide an overview of the core AtmoRep model, focusing on
the processing pipeline of the atmospheric variables and the employed training methodol-
ogy. We then describe the two downstream tasks utilizing AtmoRep and discuss the results
from initial sets of experiments. At the end, we conclude with a summary of our findings
and future research directions.

2 The AtmoRep Model

AtmoRep'7 is a stochastic, generative neural network model for atmospheric dynamics, uti-
lizing large-scale representation learning to identify patterns within the high-dimensional
state space of atmospheric data. The inherently stochastic nature of the model is crucial
to capture the inherent statistical nature of atmospheric dynamics. The model has been
trained with ERAS reanalysis data from 1980 to 2017 and evaluated on data of the year
2018, similar to other ML studies on weather forecasting. The architecture of AtmoRep is
inspired by established transformer models'® and Vision Transformer (ViT)?!, which have
demonstrated remarkable success in natural language processing and computer vision, re-
spectively. AtmoRep’s training strategy has been adopted from BERT (Bidirectional En-
coder Representations from Transformers,??). The model can be flexibly configured with
respect to the variables and vertical levels.

The flexibility with respect to the variables is achieved through a two-step training
process: In a first step, independent transformer models, termed singleformers, are trained
separately for each atmospheric variable. In a second step, these per-variable transformers
are combined with cross-attention heads added to the encoder to enable interaction between
variables in the resulting multi-variable transformer model (termed multiformer). This



approach proves efficient, since it significantly reduces the training time needed for a high-
performing AtmoRep model compared to training a multi-variable model from scratch.

Various pre-trained configurations singleformers and multiformers are publicly avail-
able fromhttps://datapub.fz-juelich.de/atmorep/trained-models.html.
All the available models were trained on 5 model levels (96, 105, 114, 123, 137), ranging
from the Earth’s surface to about 5 km altitude. The downstream applications discussed
in this work employ the singleformer-t configuration for temperature and the
multi3—uv configuration trained on temperature and wind vector components.
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Figure 1. Schematic of AtmoRep’s model architecture and training scheme!”

Figure 1 illustrates the AtmoRep model architecture. Transformer models implement
three main concepts: tokenization, embedding, and attention mapping. In AtmoRep, the to-
kenization process consists of dividing the randomly selected subset of gridded ERAS data
(36 x 54 x 108 in time x lat x lon dimensions, respectively) into several 3-dimensional
cubes known as patches or tokens. The standard configuration of these tokens are variable-
dependent. In general, variables with higher modes of variability (e.g., vorticity and diver-
gence) are cut into smaller tokens than variables with less high-frequency variations (e.g.,
temperature). For temperature, the standard token size is 3 x 27 x 27.

Subsequently, the tokens are embedded into high-dimensional vectors. Because the
attention mechanism is position-independent, relative positional encoding is added to the
tokens. Furthermore, latitude, longitude, model level, year, day-of-year, and time-of-day
are added as auxiliary information to encode external forcings such as the seasonal cycle
that is determined by the planetary motion of the Earth. The combined embeddings of
positional encoding and tokens are subsequently processed by the attention blocks of the
encoder network in the AtmoRep model. Self-attention is used to identify relations be-
tween patches of one variable, while cross-attention emphasizes correlations across vari-
ables. The output from the encoder encompasses an abstract, feature-rich representation
of atmospheric dynamics. The purpose of the decoder is then to reconstruct physical fields
based on this abstract representation. The final network layer consists of a tail network
with multiple prediction heads that draw individual samples from the learned probability



distribution of the atmospheric state.

To train the AtmoRep model, the principles of the BERT? protocol are adopted. In
this framework, some tokens are randomly masked or modified during training. The model
then learns to reconstruct the masked tokens based on contextual information provided by
unmasked tokens. AtmoRep’s training protocol is formulated as py(y|x, o) where x refers
to the masked weather data, o refers to the auxiliary information, and y refers to the recon-
structed tokens. The loss function employed to optimize the model’s parameters combines
Mean Squared Error (MSE) loss with a novel statistical loss that takes into account the
first two statistical moments of the predicted ensemble. We refer to the original AtmoRep
paper!” for more details about the model architecture and the training process.

When the pre-trained model is applied to weather-related tasks without further fine-
tuning, this is called zero-shot inference. In AtmoRep'” zero-shot performance is evaluated
for forecasting, bias correction, data interpolation, and counterfactual experiments. Here,
we add results from the data (de)compression task and provide an update on 2m tempera-
ture downscaling. For the latter, the AtmoRep core model is extended with a downscaling
tail network to account for the increased output dimension. In contrast to zero-shot applica-
tions, this extension requires fine-tuning of the task-specific AtmoRep model application.

3 Downstream Tasks

3.1 Data Compression and Reconstruction

The output of climate model simulations has been growing substantially due to increased
model resolution and the increased demand for detailed and high-frequency output of a
comprehensive set of variables>>26. The storage of climate model data is therefore be-
coming a fundamental bottleneck limiting the possible applications of climate simulations.
Data compression is one way to potentially alleviate this issue. Here, we explore how
we can use the rich representation of atmospheric dynamics learned by AtmoRep to re-
construct climate data from subsets of the original fields. In principle, AtmoRep should
allow for the faithful reconstruction of variables even when large portions of the data are
missing, since the model was trained with randomly masked data. In this section, we inves-
tigate how well AtmoRep can reconstruct data when certain systematic masking patterns
are applied.

Figure 2 illustrates different masking patterns we employed to assess the reconstruction
capabilities of AtmoRep. Our tests were constructed to assess the reconstruction quality
along individual dimensions, whereas longitude and latitude were combined into a ~’ge-
ographic” masking pattern. The compression ratios varied from 1.42 to 4 (see Table 1),
which means that up to 75% of the data is being omitted (i.e. masked). It should be
emphasized that we tested the data reconstruction in a zero-shot setting, i.e. using the
pre-trained singleformer—t AtmoRep configuration without any fine-tuning.

The space-time tokenization was set to 3 x 27 x 27, and the neighborhood was selected
for each batch as 12 x 2 x 4. The masking patterns applied are summarized in Table 1.
For every configuration, we randomly sampled 100 days from the test year 2021 (starting
from December 2020). In the first configuration (A), a "checkerboard pattern” was applied
at each model level and for all time steps: every second token in longitude and latitude
dimension was masked resulting in a compression ratio of 2. The resulting reconstruc-
tions look physically plausible. The mean root mean square error (RMSE) ranges from
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Figure 2. Illustration of masking patterns applied in the data reconstruction/decompression task

0.45 to 0.85 K across the vertical levels, with smaller errors near the surface (see Table 1).
Configuration B explored temporal masking. In configuration B1, every second time step
was masked, while configuration B2 explored a higher compression ratio of 3. Ablation
studies on temporal masking indicated that the reconstruction results are best if data points
at the beginning and end and at the center of the 36-hour time window are retained. This
is the motivation for applying the pattern depicted at the bottom of Figure 2. Compared
to geographic masking the reconstruction accuracy of temporal masking is slightly better.
It is interesting to observe that a larger compression ratio has little influence on the recon-
struction error near the surface and actually leads to smaller errors at higher model levels.
The reasons for this behaviour are not fully understood. In configuration AB we combine
geographic and temporal masking, thus achieving a compression ratio of 4. The results
show a slight improvement in RMSE values.

run  compression ratio level-wise RMSE

A 2 0.4451 0.4878 0.6748 0.7374 0.8465
Bl 2 0.3765 0.4117 0.5514 0.6568 1.2300
B2 4 0.4568 04726 0.6119 0.6551 0.9225
AB 4 0.4009 0.4318 0.5939 0.6379 0.7287
Cl 2.5 NA 1.6845 NA 1.4229 NA
C2 1.42 NA 0.3996 NA 0.4506 NA

Table 1. Configuration and accuracy (RMSE) of the data reconstruction experiments. For explanations of the
masking patterns, see Figure 2 and text. The compression ratio is defined as the ratio of available input tokens to
the full number of tokens of the reconstructed field. Further information on the masking patterns is given in the
text. RMSE values are given per model level with level indices (from left to right) 137, 123, 114, 105, and 96.



The third set of configurations explores vertical masking, i.e. leaving out data from spe-
cific vertical levels and asking the model to interpolate vertically. We found that masking
entire levels of temperature data resulted in poor reconstruction accuracy (configuration C1
in Table 1). Therefore, we tested a second variant where we applied the temporal masking
pattern on the intermediate levels, while leaving the other levels complete (configuration
C2). As expected, the results with C2 are significantly better than with C1. However, the
added value compared to the geographical and temporal masking patterns (configurations
A to AB) is small, especially in light of the much smaller deployed compression ratio
(more input information available).

As shown above, the data reconstruction is in principle possible, but further work is
needed to achieve the desired level of accuracy (e.g., RMSFE < 0.1K) and computational
performance (e.g., reconstruction time < 1s). In any case, the experiments revealed in-
teresting aspects of the model behaviour. Provided that it is possible to solve the issues
described above, this novel data compression approach offers a lot of potential, because
it would enable very high compression ratios (up to 100 or more) with relatively little
dependence of the reconstruction quality on the masking ratio (since most of the informa-
tion is stored in the model weights). We anticipate that proper fine-tuning and the use of
multivariate information will further improve the results.

3.2 Statistical Downscaling

Localized and regional meteorological data is highly relevant for society, agriculture, and
several industrial sectors, such as renewable energies. This particularly holds for re-
gions with complex terrain which introduces significant spatial variability in key mete-
orological variables such as precipitation, wind speed, or the near surface temperature.
The ERAS reanalysis, which has been utilized to train AtmoRep, operates at a resolu-
tion of Azgras ~ 30km, which is clearly insufficient to reproduce orographic features.
While ERAS5 provides a comprehensive estimate of the atmospheric state®*, it has well-
documented limitations in mountainous regions, such as the Alpine region in Central Eu-
rope. Even though there are ongoing efforts to generate meteorological data on the scale
of 1 — 2km with numerical models, these constitute a major computational challenge.
Therefore, several weather centers developed statistical models to create higher-resolution
information from coarser-resolution model output. ML models can be applied to this task
with great efficiency and equal to better quality.

To demonstrate AtmoRep’s adaptability for downstream applications, we applied it to
perform statistical downscaling of 2m temperature (T2m) data to a resolution of approx-
imately 6 km. For this purpose, we selected the COSMO REAG6 reanalysis?’ as target
dataset. COSMO REAG6 provides much more accurate information than ERAS, especially
over the Alpine region.?> While the downscaling application has already been introduced
in AtmoRep!’, we extend this analysis to further demonstrate the model’s effectiveness
for this task. This includes a more detailed analysis of spatial error patterns and of the
spatial variability in the downscaled T2m field. To substantiate our findings, we compare
AtmoRep’s performance with an Wasserstein Generative Adversarial Network (WGAN?®),
offering a more advanced benchmark than previously used in AtmoRep'”.

The downscaling application utilizes the multi3—uv configuration of AtmoRep
which has been pre-trained on temperature and the horizontal wind components. Note that



AtmoRep does not require input of high-resolution topography as many other downscaling
models; it can extract the high-resolution features from the dynamic variables alone. For
the downscaling task, we extended the core model with a tail network of 6 transformer
blocks that is connected to the last transformer block of AtmoRep’s decoder. Each block
comprises a self-attention layer with 16 attention heads and and a multilayer perceptron
with two layers. To achieve the desired resolution of the data, the output token size of
the downscaling network is enhanced by a factor of 4. The increased token size necessi-
tates an increased embedding dimension for the temperature data achieved with a linear
layer at the beginning of the downscaling network. Accordingly, the local position encod-
ing is updated. Again, an ensemble tail is deployed to provide a probablistic downscaling
output. However, a small ensemble member size of 4 was chosen due to computational
constraints. During fine-tuning, the network parameters of both the core model and the tail
network were optimized, resulting in about 1.85B trainable parameters. For optimal hard-
ware utilization, we employed both data and model parallelism. The downscaling network
has been trained for three days on 8 nodes on JUWELS Booster.

Figure 3 showcases a sample from the test year 2018, demonstrating that the downscal-
ing not only generates super resolution output, but also achieves a bias correction of the
input data.

ERAS
COSMO-REA6

Figure 3. Downscaling sample from 2018 with an air mass boundary (AMB) in the north-eastern part of the
domain. The AMB in ERAS (left) is located further north-east compared to COSMO REAG (right). The AtmoRep
downscaling result (center) demonstrates that the location of the AMB is corrected towards the ground truth data.

To assess the potential benefit of using AtmoRep for downscaling, we compare our
results with those from a WGAN. The WGAN utilizes a U-Net generator with 3.5 million
trainable parameters that has been adopted from the 2 m temperature downscaling study
of? and a convolutional critic network with 1.5M trainable parameters. In analogy to
AtmoRep, the generator is informed with temperature and wind information from several
model levels. Additionally, it also inputs coarse- and high-resolved surface topography
data to support the resolution mapping. The generator and critic components are trained
adversarially for 40 epochs on a single A100 GPU requiring about 20 hours. No noise
injection is performed in the generator, resulting in a determinstic WGAN downscaling
model. To reduce the memory requirements during training, a smaller target region is
chosen for the WGAN.

Figure 4a shows the diurnal cycle of the space-time averaged RMSE over the com-
plete test year 2018 for both models. With an ensemble-averaged RMSE of 0.989 K, the
AtmoRep downscaling model clearly outperforms the WGAN (RMSE = 1.163K). The
margin is largest for the afternoon and evening hours and can mainly be attributed to lower
errors over the Alpine region. As depicted in Figure 4b, the spatial RMSE distribution is



rather uniform with AtmoRep, whereas the WGAN exhibits RMSE values up to 3 K over
the Alpine region. This clearly documents the superiority of AtmoRep for the downscaling
task and its ability to fill in realistic orographic features in complex terrain even without
explicit topographic information.

In contrast to the conclusion above, the WGAN model is slightly better in reproducing
the spatial variability of the downscaled T2m field compared to AtmoRep (not shown).
Power spectrum analysis, along with comparisons of the domain-averaged horizontal T2m
gradient against the COSMO REAG6 ground truth, indicates that AtmoRep underestimates
small-scale spatial variability by approximately 10 % (not shown). This is not entirely
surprising since we are evaluating the ensemble mean state of AtmoRep, which will de-
crease variability. When we look at individual ensemble members, the underestimation
of variability is slightly reduced, but differences to COSMO REAG6 remain. A possible
reason for this could be the very small ensemble size of 4 members. An increased en-
semble size would require a more efficient model configuration. Strategies for this include
freezing portions of AtmoRep’s encoder-decoder weights during fine-tuning or implement-
ing a more light-weight tail network, for instance with Swin Transformers®® or Perceiver
I0-modules?'.
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Figure 4. (a) Diurnal cycle of the domain-averaged RMSE for AtmoRep and the baseline WGAN downscaling
model over the test data from 2018. The shaded area shows the standard deviation. (b) Spatial distribution of the
RMSE with the AtmoRep downscaling model averaged over the test data at 15 UTC. The evaluation region is
rendered in black. Additionally, the corresponding results of the WGAN model are displayed in the lower-right
corner.

4 Summary and Outlook

AtmoRep is one of the first foundation models for weather and climate applications that
fully exploits modern concepts of generative machine learning. In the 3 years since its
conception, the model has demonstrated very good skills at a variety of meteorological
tasks which had not been part of the original (pre-)training schedule. AtmoRep’s capabili-
ties for high-quality short-term forecasting, model correction, statistical downscaling, and
counterfactual experiments have been demonstrated in'7. Here, we extended the evalua-
tion of AtmoRep by exploring its use as a data compression engine in a zero-shot setting
and by further analysing the downscaling application including a comparison against a
competitive Wasserstein GAN model.



The data (de)compression application explored a scenario where humongous amounts
of climate data could be reduced by storing only every n-th grid box, k-th time step, or
m-th model level. While this task has a lot of similarities with the pre-training task of
random masking, our results nevertheless show that the systematic masking of specific
patterns along the horizontal, vertical, or time dimension can introduce systematic biases
in the reconstructed fields. RMSE values of reconstructed temperature fields range from
about 0.4 K on the lowest model level to slightly higher values at the top level of 5km
altitude using compression ratios between 1.42 and 4. Although this is worse than the
reconstruction quality of standard compression algorithms (e.g., JPEG), the advantage of
AtmoRep is that it does allow for much larger compression ratios (combination of patterns)
with relatively little degradation in performance. Furthermore, due to its probabilistic na-
ture, AtmoRep can generate entire ensembles based on the compressed input of a single
field. It can be expected that the reconstruction quality further improves when the model
is fine-tuned and when we exploit cross-variable correlations.

Concerning the downscaling application, AtmoRep has demonstrated its superiority
over a leading competitor model based on a WGAN. Although it failed to fully cap-
ture the enhanced variability of high-resolution temperature fields in complex terrain, it
achieved very good scores in terms of absolute error and RMSE and generated credible
high-resolution patterns following the complex orography over the Alps, even though no
topographic information was provided to the model. Initial results suggest that the down-
scaling concept also works for other variables, in particular precipitation, which is most
challenging but also highly relevant. In the current configuration, the ensemble size is very
limited so that a robust assessment of the uncertainty of the downscaled field is not possi-
ble. Various approaches to overcome these limitations have been discussed above and are
currently being explored. Already now, AtmoRep establishes a new state-of-the-art with
respect to temperature downscaling and we are confident that this will also apply to other
variables and regions.

The research on AtmoRep presented in this paper has been carried out with very little
specific funding. Only recently, several projects that aim to further develop AtmoRep into
a versatile model for weather and climate applications have been granted and the AtmoRep
consortium continues to grow. While foundation models for weather and climate are still
in their infancy, AtmoRep already allows some glimpses into what may become possible
with such tools. It can be expected that foundation models for weather and climate will
at some point replace classical numerical models in many different application areas as
they are substantially faster and often better. However, there are still several fundamental
questions to be solved and various technical challenges to be overcome. The evolution
of supercomputing centers to provide more dedicated support for Al applications is one
important cornerstone for building a bright future for weather and climate Al
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